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SUMMARY 

An analysis is made of a system of many interacting chains 
confined between a pair of surfaces which exert a short range 
attraction on the chains. The free energy of the system is 
determined from the part i t ion functions of the confined chains 
which are, in turn, determined by solutions to the self  
consistent f ie]d form of the diffusion equation with mixed 
boundary conditions. The incorporation of the analysis into 
the 'sandwich' model of bulk polymers is discussed. 

I. INTRODUCTION 

Atheoretical study of a system comprised of many interacting 
' real '  chains ( ie. ,  chains with excluded volume interactions 
between the chain segments) which are confined between a pair 
of in f in i te ,  paralle] 'st icky' surfaces ( ie. ,  surfaces which 
have a short range interaction with the chain segments) is 
useful because this system can serve as a mode] for:  the 
steric stabi l ization of colloids (DOLAN and EDWARDS 1975, 
GERBER and MOORE 1977, JOANNY,et a l . ,  1979), the amorphous 
component in bulk polymeric systems (GAYLORD et al. 1980b), 
adhesion, and the formation of a shish structure during strain- 
induced polymer crystal I ization. 
In the following sections, we wil l  examine this system using a 
continuum method based on solutions of the self consistent 
f ie ld form of the diffusion equation which satisfy mixed 
boundary conditions. We wi l l  f i r s t  set up the appropriate 
mathematical formulas. Then, we wil l  derive the mathematical 
expressions for the part i t ion function of a chain in the system 
and the total free energy of the system. Finally, we wi l l  
discuss the application of the method to the 'sandwich' model 
of bulk polymers (GAYLORD et al. 1980b). 

I I .  THE MATHEMATICAL FORMULATION OF THE PROBLEM 

Our system is comprised of many 'real '  chains between a pair of 
'st icky' surfaces. The total segment concentration is taken to 
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be su f f i c i en t l y  large so tha t :  (1) the system w i l l  have 
t rans la t ional  invariance in d i rect ions which are paral le l  to 
the surfaces, thereby permit t ing us to perform our mathematical 
analysis in one dimension in the d i rec t ion  which is normal to 
the surfaces, and (2) the f luctuat ions in the overall segment 
density w i l l  be re la t i ve ly  small, thereby enabling us to t rea t  
the segment-segment interact ions as an external ,  se l f  
consistent f i e l d  acting on independent chains. 
The pa r t i t i on  funct ion of a real polymer chain consist ing of N 
segments, each of length b, having i ts  ends located at x, x' 
and being confined with many other ' rea l '  chains, between a 
pai r  of ' s t i cky '  surfaces a distance d apart, is given (DOLAN 
and EDWARDS 1975, GAYLORD et al .  1980b) by the solut ion to the 
set of equations 

[@/@N-(b2/6)@2/~x2+~PT(X )]  G(N,x,x')=b6(x-x')~(N) (1) 

@ InG(N,x,x')/aXJx=o = a (2) 

@ InG(N,x,x')/@Xlx=d = -a (3) 

where v ~ (1/2 - x) is the Flory excluded volume parameter, 
PT(X) is the total segment density at a distance x from one of 
the surfaces and a is a parameter which represents the segment- 
surface attract ion (while i t  is not possible to use a continuum 
analysis to establish a quantitat ive relationship between a and 
the form of the segment-surface potential (DEGENNES 1979), we 
can say that as a becomes less posit ive (or more negative), the 
segment-surface attract ion becomes greater). 
Equations (1) - (3) are equivalent to (WEIGEL 1975). 

G(N,x,x')=G~ ) { l - f  do dx"~PT(X") 

�9 fodm[G~ )/G~ ' ) ] }  (4) 

where G~ ' )  is given by the solut ion to the set of 

equations 

[@/aN - (b2/6)@2/@x2]G~ = b~(x-x')6(m) (5) 

]nG~ = a (6) @ 

@ lnG~ ')/aXIX=d = -a (7) 

I I I .  THE SOLUTION TO EQUATIONS (1) - (3) USING THE GROUND STATE 
APPROXIMATION TO THE EIGENFUNCTION EXPANSION METHOD SOLUTION 

When the surface separation, d, is less than the root-mean- 
2 1/2 

square, end-to-end separation of the chain, (Nb)  , we can 

approximate equation (1) - (3) by (DEGENNES 1979, DEGENNES 
1969) 
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G(N,x,x') ~ u(x) u(x')  exp (-oN) (8) 

where ~ and u(x) are the ground state eigenvalue and 
eigenfunction of the set of equations 

-(b2/6)d2u(x)/dx 2 + VPT(X)U(X) = ~u(x) (9) 

d In u(x)/dXlx=o = ~ (10) 

d In u(x)/dXlx=d = -~ (11) 
The segment density prof i le of a chain which is characterized 
by equation (8) is given by (DEGENNES 1979) 

p(x) = N u2(x) (12) 

As equation (12) indicates, the segment density prof i le of the 
chain is not dependent on the location of the chain end~ (this 
is^because the ground state approximation assumes the d < 
NbZ). The mixed boundary condition parameter ~ represents the 
short range segment-surface interaction, and i t  should be 
related to the segment density prof i le.  Therefore, since al l  
of the chain types (c i l i a ,  bridges, f loating chains and loops) 
have the same form of p(x) in the ground state approximation, 
they should also have the same value of ~ in the ground state 
approximation. Therefore, PT(X), which is the sum of the 
segment density profi les of ~l l  the chains in the system, 

PT(X) = ~ Pi(X) (13) 
becomes 1 

PT(X) = NTU2(X ) (14) 

where N T is the total number of chain segments in the system. 
The solution to equations (9) - (11), (14) is given by 

u(x) = a sn[(x/B) + R,m] (15) 

where sn denotes the Jacobian e l l i p t i c  function and 

a = {[~ - (~2-4VNTC)I/2]/VNT } I /2  

B = {b2[~ - (~2-4VNTC)1/2]/(12VNTC)}1/2 

c = [(b2~2/12)+(~/2)]u2(x=o)-[VNT/4]u4(x=o) 

m :[~-(~2-4VNTc)ll2]/[c+(~2-4VNTc)l/2] 

The quantities R and u(x=o) are determined by 

F d u2(x)dx = 1 
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and 
d u(x)/dXlx=d/2=O 

Equation (15) can be used in conjunction with equation (8) to 
calculate the chain partit ion function. However there are some 
drawbacks to using this ground state approximation method: 
(1) the numerical evaluation of equation (15) is d i f f icu l t ,  (2) 
the requirement that the segment-surface attraction be the same 
for all chains in the system prevents i ts use in the sandwich 
model (GAYLORD et al. lg8Ob), and (3) the requirement that the 
contour length of the chain be much greater than the surface 
separation prevents i ts use in the analysis of tight loops or 
taut bridges. For these reasons, we will not pursue this 
method further and wil l  turn to an alternative, albeit 
approximate, method for analyzing the system. 

IV. A PERTURBATION EXPANSION OF EQUATION (4) 

If we examine equation (4), we see that the leading term in the 
factor G(N-m,x,x') has the form G~ Substituting 
this term into equation (4) yields the approximate expression 

�9 I , d , .  , . 
G(N,x,x')~G~ PT~X )p~ + . . . }  (16) 

where 

p~176 ,x")G~ ,x"x')/G~ ,x ' ) ]  (17) 

We now assume that the segment density profile of a chain in 
the system is not appreciably affected by excluded volume 
interactions (this is acceptable in the range within which 
equations (1), (4) and (16) are valid (DOLAN and EDWARDS 1975, 
HESSELINK, 1977)). This assumption can be expressed by 
rewriting equation (13) as 

0 / II 
PT (x'') = Z Pi ~x ) (18) 

In order to ~se equations (16) - (18), we need an expression 
for G~ This is obtained by solving equations (5) - 
(7). The results are given in the next two sections. 

V. THE SOLUTION FOR G~ ') BY THE EIGENFUNCTION EXPANSION 
METHOD 

This solution is well known (CARSLAW and JAEGER 1959). The 
result is 

G~ 

.exp(_apNb2/6]/[d(~ + 2 )  + 20] (ig) 

where the ~p, p = 1,2 . . . .  are the roots of the 
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transcendental equation 
tan(~d) = 2a~/(~2-a 2) (20) 

(We note that for a=o, i t  is necessary to add the term ( l /d) to 
equation (19)). 
The chief d i f f i cu l t y  in using equation (19) is that i t  requires 
a graphical solution of equation (20). For this reason, we 
have developed an alternative expression for G~ which 
does not include a transcendental equation. 

VI. THE SOLUTION FOR G~ ') BY THE LAPLACE TRANSFORM METHOD 

We f i r s t  Laplace transform equations (5) - (7) with respect to 
N. This gives 

d2f/dx 2 - (6s/b2)f = (-6/b 2) 6(x-x ')  (21) 

d Inf/dxlx=o = a (22) 

d lnf/dxlx=d = -a (23) 
Solving equations (21) - (23) and then taking the inverse 
Laplace transfom yields1/2 

G~ ') = {(nb2/~) exp[-n(x-x')2]}  

| 1/2 
+[ ~. (nb2/iT) {exp[-n(2ds163 2] 

~,=I 

+exp[-n(2d~+x'-x) 2] + exp[-n(2d~-x'+x)2]}] 

| 12~-1 
- [  Z b [2(2~-2)J]- Z { [2s a 2~-I-q 

~=1 q=o 

. @ 2~-2/a a 2~-2 ( aqexp ( a2/4 n ) {exp [a (2d~ -2d+x+x ' ) ] 

�9 e r f c [ ( ( a / 2 n ) + 2 d ~ - 2 d + x + x ' ) n  I / 2 ]  + exp[a(2d~-x'-x)] 

"erfc[((a/2n)+2d~-x'-x)nl/2]})}] - [Z b[2(2~' I ) ! ]  " I  
~=i 

2~ 
" Z {[(2~)!/q!(2~-q)!]  ~ @2~-i/@a2~-l(aqexp(a2/4n) 
q=o 

�9 {exp[a(2dg-x'+x)]erfc[((a/2n)+2d~-x'+x)n I/2] 
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+ e x p [ o ( 2 d ~ , + x ' - x ) ] e r f c [ ( ( ~ / 2 n ) + 2 d ~ , + x ' - x ) n l / 2 ] } ) } ]  (24) 

where n : (3/2Nb2).  

VII. THE TOTAL FREE ENERGY OF THE SYSTEM 

As noted in section If, the use of the self consistent f ield 
potential 'decouples' the chains and permits us to treat them 
as independent. The total free energy of the system is 
therefore given by using equations (16) - (18) and summing over 
all chains in the system to produce 

A T = -kT Z In G~ + --2- foVkT d dx[Z " p~ )]2 (25) 
i i 

The factor 1/2 is introduced into the second term to account 
for double counting of segment-segment interactions. 

VIII. APPLICATION TO THE 'SANDWICH' MODEL 

The sandwich model (GAYLORD et al. 1980b) consists of a system 

of M B bridges with N B segments each, M C ci l ia with N C segments 

each, M L loops with N L segments each and M F floating chains 

with N F segments each, between two inf in i te parallel 'sticky' 

surfaces which are a distance d apart. The total free energy 

of the system is given, using equation (25) by 

-kT Z M InG~(d,~j AT; j=C,L,B,F j ,Nj) 

ukT Idodx [Z M~p~ 2 (26) + ~  
j=C,L,B,F J J 

where each chain type j is assigned a unique ~j. We can 

calculate G O o for each chain type by using equations (19) and j 'Pj 
(20) or equation (24), together with formulas given elsewhere 

(GAYLORD et al. 1980a). 

In order to determine the oj values, we minimize A T with 

respect to each of the oj subject to the constraint of a 

uniform segment density between the surfaces. We therefore 

solve the set of equations 

{AT + ~Z M o 0 = ~ j=C,L,B,F jpj (x)} for all j (27) 
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where L is a Lagrange multiplier. The solutions to these 

equations, give us the aj values for each chain type and these 

~j will be functions,of d, ~, Nj and Mj for all j ,v .  

Substituting these ~j into our pO expressions and using the 

equation of constraint, ~M p~ ~= NT/d , we then obtain }. as a 
j J J 

function of d, N i and M i for all j ,~. Thus, we are able to 
obtain A T as a fI~nction~of only d, N.- and M; for all j ,v .  
We are now able to calculate both th~ swelling and the 
deformation properties of the 'sandwich' model. Since the 
total segment density profile in the 'sandwich' model is taken 
to be uniform prior to deformation, i t  should remain uniform 
during at least the in i t ia l  stages of swelling or 
deformation. Therefore, all that we need to know are the 
relationships between the surface separation, d, of the model, 
the specific type of deformation, and the particular bulk 
polymeric system being considered. This can be done using some 
primitive models which have recently been developed (GAYLORD 
1979a, GAYLORD 1979b, LOHSE and GAYLORD 1978b, GAYLORD and 
LOHSE 1978a) to describe the deformation and swelling behavior 
of the amorphous regions in semicrystalline polymers, block 
copolymers and f i l led or reinforced elastomers. (These models 
were developed incorrectly before (GAYLORD 1979b, LOHSE and 
GAYLORD 1978, GAYLORD and LOHSE 1978) because (i) they did not 
produce a uniform segment density profile, and ( i i )  they used, 
without justification, absorbing boundary conditions (~ = | in 
calculating the free energies of the confined chains (LOHSE and 
GAYLORD 1977, GAYLORD AND LOHSE, 1976). The 'sandwich' mode] 
avoids these failings.) 
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